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Innovating Science Teacher 
Education

“This is an important study. Science teaching and the preparation of science teach-
ers is dominated by a far too uncomplicated understanding of the nature of science. 
Mansoor Niaz brings a strong and clear mastery of the history and philosophy of 
science to bear on pressing issues in the teaching of science. He presents a valuable 
perspective on how we should understand the nature of science and how we can 
work with pre-service and in-service teachers to strengthen their appreciation.”

Louis Rosenblatt, Baltimore Freedom Academy

Science does not advance by just doing experiments and collecting data. Progress 
in science inevitably leads to controversies and alternative interpretations of 
data. How teachers view the nature of scientific knowledge is crucial to their 
understanding of science content and how it can be taught.

This book presents an overview of the dynamics of scientific progress and its rela-
tionship to the history and philosophy of science, and then explores their meth-
odological and educational implications and develops innovative strategies based 
on actual classroom practice for teaching topics such as the nature of science, con-
ceptual change, constructivism, qualitative-quantitative research, and the role of 
controversies, presuppositions, speculations, hypotheses, and predictions.

In recent decades a worldwide sustained effort has been underway to introduce 
history and philosophy of science into the science curriculum, textbooks, and 
classrooms. Implementation of these reform projects requires teacher training that 
promotes an understanding of the nature of science and the dynamics of scientific 
progress. Field-tested in science education courses, the book is designed to involve 
readers in critically thinking about history and philosophy of science and to engage 
science educators in learning how to progressively introduce various aspects of 
“science-in-the-making” in their classrooms, to promote discussions highlighting 
controversial historical episodes included in the science curriculum, and to expose 
their students to the controversies and encourage them to support, defend, or cri-
tique the different interpretations. Innovating Science Teacher Education offers 
guidelines to go beyond traditional textbooks, curricula, and teaching methods and 
innovate with respect to science teacher education and classroom teaching.

Mansoor Niaz is Professor at the Chemistry Department, Universidad de Ori-
ente, Cumaná, Venezuela.
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Preface

Research in science education has recognized the importance of history and 
philosophy of science (HPS). Over the last two decades there has been a world-
wide sustained effort to introduce HPS in the science curriculum, textbooks and 
the classroom. Similarly, various reform efforts in different parts of the world 
have recognized the importance of presenting science to the students within an 
HPS perspective (e.g., Project 2061 by the American Association for the 
Advancement of Science, AAAS). Implementation of these reform projects 
requires teacher training in order to facilitate an understanding of how science 
develops and the dynamics of scientific progress. Consequently, in order to 
change the educational landscape we need to familiarize teachers with develop-
ments in HPS so that they can teach science as practiced by scientists. Research 
has also shown that these aspects with respect to the nature of science have gen-
erally been ignored by textbooks, classroom teachers and some curriculum 
developers. This book provides a comprehensive overview of the contemporary 
history and philosophy of science and its implications for science teacher 
education.
	 History of science shows that most of the major achievements of what we now 
take as the advancement or progress of scientific knowledge have been contro-
versial due to alternative interpretations of experimental data. Scientific contro-
versies are found throughout the history of science. While nobody would deny 
that science in the making has had many controversies, most science textbooks 
and curricula consider it as the uncontroversial rational human endeavor.
	 This book is based on the following epistemological guidelines: (a) it is the 
problem to be researched that determines the methodology to be used; (b) a his-
torical reconstruction of a scientific theory can determine the different sources 
that contributed to its development; and (c) discussion of the historical recon-
structions based on interactions among classroom teachers can facilitate the 
elaboration of new teaching strategies. These guidelines have been followed in 
this book while discussing the different historical episodes, which have import-
ant implications for teacher training.
	 Based on these considerations my book presents an overview of the dynamics 
of scientific progress and then develops innovative teaching strategies based on 
actual classroom practice. Development of the teaching strategies in turn is 
anchored in high school and introductory level university teachers, who were 
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participating in graduate courses. The sequence of courses (methodology, epi-
stemology and research) was designed with the objective of progressively intro-
ducing various aspects of “science in the making”. Classroom discussions were 
based on highlighting controversial aspects of various historical episodes 
included in the science curriculum. Participating teachers were not only exposed 
to the controversies but also encouraged to support, defend or critique the differ-
ent interpretations. Just as the historical reconstructions discussed in class 
provide a glimpse of “science in the making”, all chapters of this book facilitate 
an understanding of how teachers interact to critically appraise dynamics of sci-
entific progress. Some of the salient features of my book are:

a.	 Historical reconstructions presented are very different from textbook pres-
entations.

b.	 Historical and philosophical discussions are not simple adjuncts to the 
course but rather an essential part of the curriculum.

c.	 Science does not advance by just doing the experiments and having the data.
d.	 Progress in science inevitably leads to controversies and alternative interpre-

tations of data.
e.	 Teachers’ epistemological outlook is crucial in order to facilitate conceptual 

understanding.
f.	 Motivation of teachers to question the conventional wisdom with respect to 

progress in science (as depicted in textbooks) and pursue further studies 
within a history and philosophy of science perspective.

g.	 Given the opportunity, teachers can critically scrutinize the different histor-
ical episodes and suggest ways for innovating classroom practice.

h.	 Teaching science as practiced by scientists is an important guideline for 
teacher training.

In writing this book my objective was not any particular course. This has the 
advantage that the book could be adopted partially for various types of courses, 
such as: Introduction to history and philosophy of science; Research methodol-
ogy; Dynamics of scientific progress; How to introduce nature of science in the 
classroom. My book explicitly deals with the following aspects: (a) teacher-
training courses based on the experience of in-service teachers; (b) history and 
philosophy of science as an essential part of the science curriculum; (c) meth-
odological (qualitative, quantitative, mixed methods, controversies, presupposi-
tions, speculations, hypotheses, predictions); and (d) history and philosophy of 
science as part of classroom practice (alternative interpretations, nature of sci-
ence, ideas about science, tentative nature of scientific knowledge). The intended 
audience for this book is: secondary and introductory level university teachers, 
science teacher educators, researchers in science education, science teachers, sci-
ence methods course teachers and students and graduate students.
	 Chapters 2–11 of this book deal with different aspects of history and philo-
sophy of science and how it can be incorporated in the classroom, and can easily 
constitute a course outline. Chapter 2 contrasts the role of presuppositions, con-
tradictions, controversies and speculations (i.e., science in the making) with 
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Kuhn’s “normal science”. Based on this, Chapter 3 provides a rationale for mixed 
methods (integrative) research programs in education. Alternative approaches to 
methodology in educational research are explored in Chapter 4. Possibility of 
generalization in qualitative educational research is considered in Chapter 5. 
Difficulties associated with qualitative research in education is the subject of 
Chapter 6. Ability to formulate hypotheses and predictions is treated in Chapter 
7. Alternative interpretations of conceptual change based on rival theories are 
discussed in Chapter 8. Role of historical controversies and their application in 
the classroom is the subject of Chapter 9. Chapter 10 considers which ideas 
about science should be included in the classroom based on a historical perspec-
tive. Finally, based on constructivism, understanding tentative nature of scient-
ific knowledge is illustrated in Chapter 11. Contents of this book can be divided 
into three main groups: (a) Chapters 2 and 3 primarily deal with philosophical 
questions; (b) Chapters 4–7 are based on methodological problems; and (c) 
Chapters 8–11 illustrate how history and philosophy of science can be intro-
duced in the classroom. Based on their interests and orientation readers can 
select the appropriate chapters.
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Chapter 1

Introduction

Most science teachers, textbooks and curricula consider progress in science to 
be based entirely on experiments, which provide evidence that unambiguously 
leads to the formulation of scientific theories. A historical reconstruction of the 
different topics of the science curriculum reveals that although experiments are 
important, interpretation of the data is even more important. In order to 
develop their research programs, besides the experimental data, scientists rely 
on their guiding assumptions (presuppositions), which inevitably leads to con­
flicts and controversies. Review of the literature based on textbook analyses 
reveals almost a complete lack of understanding of the role played by presup­
positions, contradictions, controversies and speculations (Niaz, 2008a). In the 
early stages of all research, scientists are groping with difficulties, future of the 
research cannot be predicted, interpretations are uncertain and stakes are high 
due to competing groups (peer pressure). Furthermore, students’ understand­
ing of nature of science is quite similar to that of the textbook. The traditional 
science curriculum in general would seem to ignore the “how” and “why” of 
science in the making. Studies presented in this book suggest that the teacher, 
by “unfolding” the different episodes (based on historical reconstructions), can 
emphasize and illustrate how science actually works, namely tentative, contro­
versial rivalries among peers and alternative interpretations of data. Con­
sequently, innovating science teacher education is an important part of the 
research agenda.
	 According to Gage (2009), as compared to other areas in education, research 
on teaching has been neglected and suggests the following topics for research: 
need for a theory, evolution of a paradigm for the study of teaching, conception 
of the process of teaching, conception of the content of teaching, conception of 
students’ cognitive capabilities and motivations, conception of classroom man­
agement and the integration of these conceptions. Borko, Liston and Whitcomb 
(2007) have also recognized that teacher education is relatively a new field of 
study. Furthermore, these authors have emphasized the importance of research 
in teacher education and suggested:

Several sound research genres are available to the teacher education research 
community, each genre better suited for some questions than others. The 
researcher’s first and most essential role is to pose questions of practical and 
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theoretical significance. Researchers then should evaluate which genre or 
combination of genres best fits the question(s) and the resources available to 
conduct a well-designed study.

(p. 9, emphasis added)

This is sound advice, in view of the fact that most methodology courses suggest 
that researchers should first select the genre of research (qualitative, quantitative, 
mixed, etc.) and then the question to be investigated. A leitmotiv of this book is 
that it is the problem to be researched that determines the methodology to be 
used. It seems that after the paradigm wars (Gage, 1989; Phillips, 1983), the 
research community has learned that we cannot adopt the research methodology 
a priori but rather let the problem situation provide the rationale and guidelines. 
This is a major step in going beyond the paradigm wars (Saloman, 1991).
	 The Arizona Collaborative for Excellence in the Preparation of Teachers 
(ACEPT) Program is one of several reform efforts supported by the National 
Science Foundation in the USA. The primary ACEPT reform mechanism has 
been month-long summer workshops in which university and community 
college science and mathematics faculty learn about instructional reforms and 
then attempt to apply them in their courses. Adamson et al. (2003) studied 
whether enrollment of pre-service teachers in one or more of these ACEPT-
reformed undergraduate courses is linked to the way they teach after they gradu­
ate and become in-service teachers and concluded: “These results support the 
hypothesis that teachers teach as they have been taught. Furthermore, it appears 
that instructional reform in teacher preparation programs including both 
methods and major’s courses can improve secondary school student achieve­
ment” (pp. 939–940). If “teachers teach as they have been taught” then innovat­
ing teacher training programs is all the more important. Teachers not only 
contribute to the development of individuals and societies but also attain self-
realization through teaching (Shim, 2008).
	 In a recent survey conducted among members of the National Association for 
Research in Science Teaching (NARST) to determine the importance of issues 
faced by the science education community, the two top priorities were enhanc­
ing in-service teacher education and improving pre-service teacher education 
(cf. Czerniak, 2009). Given the presence of NARST members both in the USA 
and many other countries, it seems that teacher training constitutes an import­
ant part of the science education research agenda.
	 Historians and philosophers of science have devoted a considerable amount 
of work toward understanding the dynamics of scientific progress and what con­
stitutes nature of science, NOS (Giere, 2006; Niaz, 2009a). In contrast, most stu­
dents and teachers in most parts of the world frequently believe that science is a 
collection of facts and that the best way to learn science is to memorize those 
facts (Linn, Songer & Lewis, 1991). Millar (1989) has cautioned against perceiv­
ing nature of science as an empiricist epistemology, for the following reasons: (a) 
pedagogical: teaching science becomes a business of rote memorization of stand­
ard facts, laws, theories, methods and problem-solving procedures; and (b) epis­
temological: science is viewed as infallible and a body of absolute facts or 
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received knowledge. The degree to which students’ conceptions of NOS are 
influenced by their teachers and textbooks is the subject of considerable research. 
According to Lederman (1992), such influence is mediated by a complex set of 
factors, such as curriculum constraints, administrative policies and teachers’ 
conceptualization of learning. Given the complexity and multifaceted nature of 
the issues involved and a running controversy among philosophers of science 
themselves, implementation of NOS in the classroom has also been difficult. 
Despite the controversy a certain degree of consensus has been achieved within 
the science education community and nature of science can be characterized, 
among others, by the following aspects (Abd-El-Khalick, 2004; Lederman, 2004; 
McComas et al., 1998; Niaz, 2001a, 2008b; Osborne et al., 2003; Scharmann & 
Smith, 2001; Smith & Scharmann, 1999):

  1.	 Scientific knowledge relies heavily, but not entirely, on observation, experi­
mental evidence, rational arguments and skepticism.

  2.	 Observations are theory-laden.
  3.	 Science is tentative/fallible.
  4.	 There is no one way to do science and hence no universal, recipe-like, step-

by-step scientific method can be followed.
  5.	 Laws and theories serve different roles in science and hence theories do not 

become laws even with additional evidence.
  6.	 Scientific progress is characterized by competition among rival theories.
  7.	 Different scientists can interpret the same experimental data in more than 

one way.
  8.	 Development of scientific theories at times is based on inconsistent 

foundations.
  9.	 Scientists require accurate record keeping, peer review and replicability.
10.	 Scientists are creative and often resort to imagination and speculation.
11.	 Scientific ideas are affected by their social and historical milieu.

A review of the literature shows that most teachers in many parts of the world 
lack an adequate understanding of some or all of the different NOS aspects out­
lined above (Akerson et al., 2006; Bell et al., 2001; Blanco & Niaz, 1997; Clough, 
2006; Dogan & Abd-El-Khalick, 2008; Lederman, 1992; Mellado et al., 2006; 
Pomeroy, 1993; Tsai, 2002). This should be no surprise to anyone who has ana­
lyzed science curricula and textbooks, which have a pronounced stance toward 
an entirely empiricist and positivist epistemology. Tsai (2006) has argued 
cogently for including the various aspects of NOS for both pre-service and in-
service teacher training:

Scientific knowledge should be regarded as an invented reality, which is also 
constructed through the use of agreed-upon paradigms, acceptable form of 
evidence, social negotiations in reaching conclusions, and technological, 
contextual and cultural impacts are recognized by participating scientists. 
These views are very different from traditionally empiricist perspectives. The 
empiricist position assumes that scientific knowledge is a discovery of an 
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objective reality external to ourselves and discovered by observing, experi­
menting or application of a universal scientific method.

(pp. 363–364, original italics, underline added)

Let us now compare this with what Steven Weinberg (2001), Nobel Laureate in 
physics, has to say about objective reality and truth in science: “What drives us 
onward in the work of science is precisely the sense that there are truths out there 
to be discovered, truths that once discovered will form a permanent part of 
human knowledge” (p. 126, emphasis added). No wonder science curricula and 
textbooks in most parts of the world follow a similar epistemology. Giere (2006) 
has characterized such philosophical positions as “objectivist realism” (p. 5), and 
explained cogently:

Weinberg should not need reminding that, at the end of the nineteenth cen­
tury, physicists were as justified as they could possibly be in thinking that 
classical mechanics was objectively true. That confidence was shattered by 
the eventual success of relativity theory and quantum mechanics a genera­
tion later.

(p. 118)

	 This leads to yet another interesting issue: do all Nobel Laureates in physics 
follow “objectivist realism”? The following statement from Leon Cooper, another 
Nobel Laureate in physics, can provide science teachers a better insight with 
respect to the dynamics of scientific progress:

Observations can have varying interpretations, but this does not undermine 
the objective nature of science . . . It’s somewhat ironic that what we like to 
call the meaning of a theory, its interpretation, is what changes. Think, for 
example, of the very different views of the world provided by quantum 
theory, general relativity and Newtonian theory.

(p. 47, reproduced in Niaz, Klassen, McMillan & Metz, 2010a)

As a methodological guideline (important for teacher training), Giere (2006) 
suggests that only a historical examination of a scientific theory can determine 
the different sources that contributed to its development (p. 6). Similarly, Phil­
lips (2005a) has critiqued educational research for not providing real examples 
and concluded that philosophy of educational research is roughly at the stage 
that much philosophy of science was six decades ago (Phillips is referring to the 
in-depth historical studies starting in the 1950s by contemporary philosophers of 
science, such as Popper, Kuhn, Lakatos, Cartwright and Galison). In contrast to 
Giere’s (2006) “objectivist realism”, Cobern and Loving (2008) have espoused an 
“epistemological realism” with the following caveat, “science is imperfect, incom­
plete and fallible; and is not the only source of knowledge that we as humans find 
of value” (p. 443). These critiques and reflections have served as a guideline in 
the elaboration of the different historical episodes in this book (especially Chap­
ter 3) and their implications for teacher training.
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	 Kenneth Wilson, another Nobel Laureate in physics, has argued forcefully as 
to how the “perpetual flux” in the history of science can cultivate students’ expec­
tations of how they might contribute to future changes in scientific innovation:

The key role of history here is characterizing the complexities of how science 
changes. So many science textbooks unhelpfully—and above all inaccu­
rately—cultivate a rather static image of scientific disciplines, as if they were 
completed with comprehensive certainty. It is perhaps not difficult to under­
stand how this gross oversimplification might arise as the result of a 
pedagogical need to “tidy up” the presentation of science to meet the needs 
and capacities of students. But faced with the textbook spectacle of such an 
apparently unalterable monolith, is it any wonder that students can have dif­
ficulty conceiving how they might ever contribute to science?

(Gooday, Lynch, Wilson & Barsky, 2008, p. 326, original italics)

Wilson and Barsky (1998) have provided the lead in integrated historical teach­
ing in order to enable students to understand what science is and how it is con­
ducted. They have suggested that in order for these reform efforts to be 
successful, teacher preparation is a critical issue.
	 Slater (2008) has raised a provocative question for science teacher education: 
how to justify teaching false science? This, in turn, is based on the premise that 
we teach false science (e.g., Newtonian mechanics, Thomson, Rutherford and 
Bohr models of the atom). As a possible solution to the dilemma, Slater suggests 
that “the best way of teaching false science is by teaching it as false, but illustra-
tively—incorporating a critical historical perspective into the science curricu­
lum” (p. 541, original italics). This clearly shows the need for incorporating a 
history and philosophy of science perspective in the science curriculum, in order 
to facilitate a better understanding of the dynamics of scientific progress. In 
other words, “false science” can illustrate to students and teachers how under­
standing of experimental data in the history of science led to controversies and 
alternative interpretations.
	 With this background it would help to better understand the considerable 
amount of work that has been done to teach NOS in the classroom (Abd-El-
Khalick & Akerson, 2004, 2007; Bianchini & Colburn, 2000; Ford & Wargo, 
2007; Irwin, 2000; Khishfe & Lederman, 2006; Lin & Chen, 2002; Niaz et al., 
2002; Southerland et al., 2006; Sowell et al., 2007; Von Aufschnaiter et al., 2008; 
Wong et al., 2008). Nevertheless, the relationship between teachers’ conceptions 
of NOS and their classroom practice is more complex than generally appreciated. 
Abd-El-Khalick and Lederman (2000b) have attributed this to various factors, 
such as: pressure to cover content, classroom management and organizational 
principles, concern for student abilities and motivation, institutional constraints, 
teaching experience and difficulties in understanding the philosophical under­
pinnings of nature of science. Concern for covering content is counter-
productive if we want to cultivate students’ interest and motivation with respect 
to what is science and how it progresses, and at the same time foster a natural 
curiosity about the world around us. Cobern et al. (1999) have argued cogently 
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with respect to how students’ understanding of nature of science can be “suc­
cessful only to the extent that science finds a niche in the cognitive and cultural 
milieu of students” (p. 541).
	 Despite the difficulties, research in science education has continued to work 
on the development and implementation of courses/materials both at the under­
graduate and high school levels, in order to facilitate students’ and teachers’ 
understanding of NOS (Abd-El-Khalick, 2005; Abd-El-Khalick, Bell & Leder­
man, 1998; Niaz, 2009b; Pocoví, 2007). At this stage it would be interesting to 
provide greater insight into how teachers can acquire a deeper understanding of 
the nature of science and how progress in science is a complex process. Sadler et 
al. (2004) have argued cogently that science operates under the implicit assump­
tion that scientific knowledge develops, builds upon itself and changes over time, 
namely, its tentative nature. Furthermore, scientists would not devote their lives 
to the pursuit of knowledge if they had no chance of adding to or changing pre­
vailing paradigms. One of the participating teachers in a study designed to facili­
tate greater understanding of NOS provided the following informed view with 
respect to how observations are theory-laden:

Science is not as objective as people would like to believe. When presented 
with evidence, people interpret it differently. The scientists involved in the 
debate about extinction of dinosaurs each came from different paradigms. 
They interpret their evidence according to their own paradigm.

(Reproduced in Abd-El-Khalick, 2005, p. 29)

A critical reader may point out that such thinking may lead the teachers to con­
sider decisions in the construction of scientific knowledge as arbitrary. However, 
this is not the intention. The important point is to understand that objectivity by 
itself does not help to take decisions, but rather it is the decision-making process 
(controversy, conflicts and alternative interpretations of data) that provides an 
objective status to the scientific enterprise. Campbell (1988a), a methodologist, 
has expressed this in succinct terms:

[T]he objectivity of physical science does not come from the fact that single 
experiments are done by reputable scientists according to scientific stand­
ards. It comes instead from a social process which can be called competitive 
cross-validation . . . and from the fact that there are many independent 
decision makers capable of rerunning an experiment, at least in a theoreti­
cally essential form. The resulting dependability of reports . . . comes from a 
social process rather than from dependence upon the honesty and compe­
tence of any single experimenter.

(pp. 302–303, original italics)

A major difficulty in implementing NOS is the expectation that students will 
come to understand it by “doing science” (Lederman, 2004, p. 315). This is like 
assuming that students would come to understand photosynthesis just by watch­
ing a plant grow. In order to facilitate understanding of NOS teachers need to go 
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beyond the traditional curriculum and emphasize the difficulties faced by the sci­
entists and how interpretation of data is always problematic, leading to contro­
versies among contending groups of researchers. Next, examples are provided of 
how “doing science” is not a sufficient condition for understanding science.
	 J.J. Thomson (1897) is generally credited to have “discovered” the electron 
while doing experiments with cathode rays. Determination of the mass-to-charge 
(m/e) ratio of the cathode rays can be considered the most important experimen­
tal contribution of Thomson. Yet, he was neither the first to do so nor the only 
experimental physicist. Kaufmann and Wiechert also determined the m/e of 
cathode rays in the same year and their values agreed with each other (for details, 
see Niaz, 1998). If we demonstrate this experiment in the classroom or students 
handle the equipment themselves (i.e., doing science), it may be useful, and this 
is good educational practice. However, by emphasizing that “science is empiri­
cal” (doing experiments) we shall be denying students an important aspect of the 
nature of science, namely what made Thomson’s work different from that of 
Kaufmann and Wiechert. Falconer (1987) has explained cogently how both 
Kaufmann and Wiechert lacked a theoretical framework (heuristic principle) to 
understand the data. In contrast, Thomson had a heuristic principle before doing 
the experiments, namely cathode rays could be considered as ions (if m/e ratio 
was not constant) or universal charged particles (if m/e ratio was constant). 
Indeed, most general chemistry and physics textbooks emphasize the experimen­
tal details (doing science) and ignore Thomson’s heuristic principle for interpret­
ing and understanding the data (for details, see Niaz, 1998; Rodríguez & Niaz, 
2004a).
	 Soon after Geiger and Marsden (1909) published their results (working under 
E. Rutherford’s supervision), Thomson and colleagues also started working on 
the scattering of alpha particles in their laboratory (again, doing the experiment 
in the classroom can help). Although experimental data from both laboratories 
were similar, interpretations of Thomson and Rutherford were entirely different. 
Thomson propounded the hypothesis of compound scattering, according to 
which a large-angle deflection of an alpha particle resulted from successive colli­
sions between the alpha particles and the positive charges distributed throughout 
the atom. Rutherford (1911), in contrast, propounded the hypothesis of single 
scattering, according to which a large-angle deflection resulted from a single col­
lision between the alpha particle and the massive positive charge in the nucleus. 
The rivalry led to a bitter dispute between the proponents of the two hypotheses 
(for details, see Niaz, 1998; Wilson, 1983). At one stage the controversy became 
so bitter that Rutherford charged that a colleague of Thomson had “fudged” the 
data. Once again, most chemistry and physics textbooks ignore the difficulties 
involved in understanding the data and the ensuing controversy (cf. Niaz, 1998; 
Rodríguez & Niaz, 2004a).
	 History of science shows how R.A. Millikan (1868–1953) and F. Ehrenhaft 
(1879–1952) obtained very similar experimental observations (oil drop experi­
ment), and yet their theoretical frameworks led them to postulate the elementary 
electrical charge (electrons) and fractional charges (sub-electrons), respectively. 
The Millikan–Ehrenhaft controversy lasted for many years (1910–1923) and was 
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discussed by leading scientists. The problematic nature of Millikan’s interpreta­
tion was revealed many years later when Holton (1978a, 1978b) consulted his 
handwritten notebooks in CALTECH. The oil drop experiment is still used in 
undergraduate physics labs and continues to be problematic for students (cf. 
Klassen, 2009). Not surprisingly, both general chemistry and physics textbooks 
do present the experiment in considerable detail, and still completely ignore the 
Millikan–Ehrenhaft controversy (Niaz, 2000a; Rodríguez & Niaz, 2004b).
	 Experiments related to the photoelectric effect played a crucial role in the con­
struction of the modern atomic theory and form an important part of the science 
curriculum. Once again, Robert Millikan provided the first experimental evidence 
for Einstein’s photoelectric equation. Interestingly, however, in the same publica­
tion (Millikan, 1916), he recognized the validity of Einstein’s equation and simul­
taneously questioned the underlying hypothesis of lightquanta put forward by 
Einstein. This may sound incredible to any student who has not been exposed to 
history and philosophy of science. Philosophers of science refer to this as under­
determination of scientific theories by experimental evidence, namely no amount 
of experimental evidence can provide conclusive proof for a theory (for details, cf. 
Niaz, 2009a). A recent study has revealed an almost complete lack of the historical 
perspective (essential for conceptual understanding) in presenting the photoelec­
tric effect in general physics textbooks (cf. Niaz, Klassen, McMillan & Metz, 
2010b). These authors reported that a great majority of the textbooks considered 
that Millikan had provided experimental evidence for Einstein’s hypothesis of 
lightquanta, contrary to what he himself had claimed.
	 These examples provide a clear illustration of the dilemma involved in “doing 
science” and understanding science, as teachers in most parts of the world invar­
iably emphasize the former, that is, lab activities, and thus do not arouse stu­
dents’ curiosity with respect to “science in the making”. Interestingly, Tsai (2003) 
has investigated laboratory learning environments and found that teachers gen­
erally held an empiricist epistemology and showed higher preferences for better 
equipment than did their students. Cathode ray experiments, scattering of alpha 
particle experiments, photoelectric effect and the oil drop experiments are con­
sidered to be the foundation of modern science (early 20th century) and are 
included in science curricula and textbooks both at the upper secondary and uni­
versity freshman level, in almost all parts of the world (Chapters 2 and 3 provide 
more details of these and other experiments). However, very rarely are students 
provided an insight into what the scientists were discussing/arguing with their 
peers while the experiments were being conducted. In other words, scientific 
theories require a considerable amount of ingenuity, creativity and “competitive 
cross-validation” in order to convince the scientific community. A major objec­
tive of this book is to provide guidelines and a framework for including these 
historical episodes in the upper secondary and university freshman classroom 
practice (see Chapters 8, 9, 10 and 11). In order to facilitate understanding, a 
brief overview of the different chapters of this book is presented next.
	 Role of presuppositions, contradictions, controversies and speculations versus 
Kuhn’s normal science. Kuhn (1970) considered textbooks to be good 
“pedagogical vehicles” for the perpetuation of “normal science” (Chapter 2). 
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Collins (2000) has pointed out a fundamental contradiction with respect to what 
science could achieve (discover and create new knowledge) and how we teach 
science (dogmatic and authoritarian). Despite the reform efforts (Project 2061, 
Beyond 2000), students (secondary and university) still have naive views about 
the nature of science in which experimental data unambiguously lead to the 
formulation of laws and theories. Review of the literature based on textbook 
analyses shows an almost complete lack of understanding of the role played by 
presuppositions, contradictions, controversies and speculations in scientific 
progress. Kuhn’s advice based on “normal science” would seem to suggest that 
the science curriculum need not appeal to the imagination and creativity of the 
students. It is not my intention to suggest that Kuhn has promoted the inclusion 
of “normal science” in science textbooks. The teacher by “unfolding” the differ­
ent episodes (based on historical reconstructions) can emphasize and illustrate 
how science actually works (tentative, controversial, rivalries, alternative inter­
pretations of the same data), and this will show to the students that they need to 
go beyond “normal science” as presented in their textbooks.
	 A rationale for mixed methods (integrative) research programs in education. 
Recent research shows that research programs (quantitative, qualitative and 
mixed) in education are not displaced (as suggested by Kuhn) but rather lead to 
integration. The objective of Chapter 3 is to present a rationale for mixed 
methods (integrative) research programs based on contemporary philosophy of 
science (Lakatos, Giere, Cartwright, Holton, Laudan). This historical reconstruc­
tion of episodes from physical science (spanning a period of almost 300 years, 
from the 17th to the 20th century) does not agree with the positivist image of 
science. Quantitative data (empirical evidence), by itself, does not facilitate 
progress (despite widespread belief to the contrary), neither in the physical sci­
ences nor in the social sciences (education). A historical reconstruction shows 
that both Piaget and Pascual-Leone’s research programs in cognitive psychology 
follow the Galilean idealization quite closely, similar to the research programs of 
Newton, Mendeleev, Einstein, Thomson, Rutherford, Millikan and Perl in the 
physical sciences. This relationship does not imply that researchers in education 
have to emulate research in the physical sciences. A major argument in favor of 
mixed methods (integrative) research programs is that it provides a rationale for 
hypotheses, theories, guiding assumptions and presuppositions to compete and 
provide alternatives. Similar to the physical sciences, this proliferation of hypoth­
eses leads to controversies and rivalries, and thus facilitates the decision-making 
process of the scientific community.
	 Exploring alternative approaches to methodology in educational research. The 
objective of Chapter 4 is to provide in-service teachers an opportunity to famil­
iarize themselves with the controversial nature of progress in science (growth of 
knowledge) and its implications for research methodology in education. The 
study is based on 41 participants who had registered for a 9-week course on 
Methodology of Investigation in Education, as part of their Master’s degree 
program. The course is based on 20 readings drawing on a history and philo­
sophy of science perspective (positivism, constructivism, Popper, Kuhn, Lakatos) 
and its implications for educational research (Campbell, Erickson). Course 
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activities included written reports, classroom discussions based on participants’ 
presentations and written exams.
	 Can findings of qualitative research in education be generalized? Most qualita­
tive researchers do not recommend generalization from qualitative studies, as 
this research is not based on random samples and statistical controls. The objec­
tive of Chapter 5 is to explore the degree to which in-service teachers understand 
the controversial aspects of generalization in both qualitative and quantitative 
educational research and as to how this can facilitate problems faced by the 
teachers in the classroom. The study is based on 83 participants who had regis­
tered for a 10-week course on Methodology of Investigation in Education, as part 
of their Master’s degree program. The course is based on 11 readings drawing on 
a philosophy of science perspective (positivism, constructivism, Popper, Kuhn, 
Lakatos). Course activities included written reports, classroom discussions based 
on participants’ presentations and written exams.
	 Qualitative methodology and its pitfalls in educational research. There is con­
siderable controversy in educational research with respect to the use of qualita­
tive and quantitative data and as to what constitutes scientific research. The 
objective of Chapter 6 is to explore the degree to which in-service teachers 
understand the difference between qualitative/quantitative data and methods, 
validity/authenticity, generalization and how these can be used to solve problems 
faced by the teachers. The study is based on 84 participants who had registered 
for a 10-week course on Methodology of Investigation in Education, as part of 
their Master’s degree program. The course is based on 11 readings drawing on a 
history and philosophy of science perspective (positivism, constructivism, 
Popper, Kuhn, Lakatos). Course activities included written reports, classroom 
discussions based on participants’ presentations and written exams.
	 Did Columbus hypothesize or predict? Facilitating teachers’ understanding of 
hypotheses and predictions. A review of the literature in science education shows 
that most students have difficulties in hypothetico-deductive reasoning. The 
ability to elaborate and differentiate between observations, hypotheses and pre­
dictions is important and need not necessarily be considered as part of the sci­
entific method. Most philosophers of science would question the existence of a 
scientific method as a series of specifiable procedures that constitute an algo­
rithm (Cartwright, 1999; Giere, 1999; Lakatos, 1970; Polanyi, 1964). The objec­
tive of Chapter 7 is to investigate high school and freshman university teachers’ 
ability to understand the difference between hypotheses and predictions in the 
everyday context of Columbus’ discovery of America. Eighty-three high school 
and introductory level university teachers enrolled in a Methodology course 
were asked to elaborate and explain a prediction and a hypothesis based on 
Columbus’ discovery. As a follow up, a study was designed to facilitate in-service 
high school and university teachers’ understanding of the difference between the 
terms hypothesis and prediction. The context for understanding these terms was 
Columbus’ discovery of America (same as in the previous study). Control-group 
teachers (n = 94) were evaluated before the discussion of these terms, whereas 
Experimental group teachers (n = 102) were evaluated after these terms had been 
fully discussed and elaborated in class.
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	 Facilitating teachers’ understanding of alternative interpretations of conceptual 
change. Historians and philosophers of science have recognized the importance 
of controversies in the progress of science. The objective of Chapter 8 is to facili­
tate in-service chemistry teachers’ understanding of conceptual change based on 
alternative philosophical interpretations (controversies). Selected controversies 
formed part of the chemistry curriculum both at secondary and university fresh­
man level. The study is based on 17 in-service teachers who had registered for an 
11-week course on Investigation in the Teaching of Chemistry as part of their 
Master’s degree program. The course is based on 17 readings drawing on a 
history and philosophy of science perspective with special reference to contro­
versial episodes. Course activities included written reports, classroom discus­
sions based on participants’ presentations and written exams. In this study most 
of the teachers went through an experience that involved inconsistencies, con­
flicts, contradictions and finally some degree of conceptual change. A few of the 
participants, however, resisted any change, but still raised important issues with 
respect to conceptual change.
	 Progressive transitions in teachers’ understanding of nature of science based on 
historical controversies. The objective of Chapter 9 is to facilitate progressive 
transitions in chemistry teachers’ understanding of NOS in the context of histor­
ical controversies. Selected controversies referred to episodes that form part of 
the chemistry curriculum both at secondary and university freshman level. The 
study is based on 17 in-service teachers who had registered for an 11-week 
course on Investigation in the Teaching of Chemistry as part of their Master’s 
degree program. The course is based on 17 readings drawing on a history and 
philosophy of science perspective with special reference to controversial episodes 
in the chemistry curriculum. Course activities included written reports, class­
room discussions based on participants’ presentations and written exams. The 
opportunity to reflect, discuss and participate in a series of course activities based 
on controversies can enhance teachers’ understanding of NOS.
	 What “ideas-about-science” should be taught in school science? The objective of 
Chapter 10 is to facilitate in-service chemistry teachers’ understanding of nature 
of science and what “ideas-about-science” can be included in the classroom. The 
study is based on 17 in-service teachers who had registered for an 11-week 
course on Epistemology of Science Teaching as part of their Master’s degree 
program. The course is based on 17 readings drawing on NOS and its critical 
evaluation. Course activities included written reports, classroom discussions 
based on participants’ presentations and written exams. This course provided 
participant teachers an opportunity to familiarize themselves with research on 
what “ideas-about-science” can be taught in the classroom and how critical 
appraisal of the literature is necessary in order to go beyond our present under­
standing of the issues.
	 Whither constructivism? Understanding the tentative nature of scientific know-
ledge. Constructivism in science education has been the subject of considerable 
debate in the science education literature. The purpose of Chapter 11 is to facili­
tate chemistry teachers’ understanding that the tentative nature of scientific 
knowledge leads to the coexistence of rivalries among different forms of 
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constructivism in science education. The study is based on 17 in-service teachers 
who had registered for an 11-week course on Epistemology of Science Teaching 
as part of their Master’s degree program. The course is based on 17 readings 
drawing on NOS and a critical evaluation of constructivism. Course activities 
included written reports, classroom discussions based on participants’ presenta­
tions and written exams.
	 At this stage I would like to introduce some basic ideas that may be of help, 
especially to students who may not be familiar with recent developments in 
history and philosophy of science.

Positivism

It would be helpful to have a historical perspective with respect to the various 
forms of positivism (Phillips, 1994a). History of science shows that positivism 
was the dominant philosophy from about the end of the 19th century to about 
the middle of the 20th century. Positivism has many faces and philosophers tend 
to characterize it in different ways: (a) classic positivism can be traced to Comte 
(1798–1857), who emphasized that science focuses upon observation and hence 
scientific knowledge consisted only in the description of observed phenomena 
and not inferred theoretical entities; (b) logical positivism associated with the 
Vienna Circle which was very active during the 1930s and introduced the Verifi­
ability Principle, according to which something is meaningful if and only if it is 
verifiable empirically, or, in other words, “if it can’t be seen or measured, it is not 
meaningful to talk about”; (c) behaviorism for their hostility to abstract theoriz­
ing and metaphysics; and (d) empiricism which again emphasizes that our know­
ledge is wholly or partly based on experience through the senses and 
introspection. According to Phillips (1983), although logical positivism is a type 
of empiricism, not all varieties of empiricism are positivistic.
	 The importance of having positivist or more adequate epistemological views 
is important for teacher training. For example, Tsai (2007) has explored the rela­
tionship between middle school physical science teachers’ (Taiwan) epistemo­
logical views, teaching beliefs, instructional practices and students’ 
epistemological views. Findings suggested adequate coherence between teachers’ 
epistemological views and teaching beliefs as well as instructional practices. 
Teachers with relatively positivist-aligned views tended to draw attention to stu­
dents’ science scores in tests and allocate more instructional time on teacher-
directed lectures and in-class examinations, thus implying more passive or rote 
learning. In contrast, teachers with constructivist-oriented views tended to focus 
on student understanding and application of scientific concepts, by devoting 
more time to inquiry activities and interactive discussions. This clearly shows 
that teachers with positivist views tend to encourage and foster more traditional 
teaching practices based on algorithmic learning.
	 Similarly, logical positivism has also been the subject of study with special ref­
erence to the science curriculum. According to Van Aalsvoort (2004), most sec­
ondary school students consider chemistry to be irrelevant. Based on a review of 
science education literature, the atheoretical nature of the observational language 
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and the curriculum (based heavily on the textbooks), the author concluded that 
chemical education is driven by logical positivism. As a philosophy of science, 
logical positivism creates a divide between science and society. Based on these 
premises, the author hypothesized that the adoption of logical positivism causes 
chemistry’s lack of relevance in chemical education. This hypothesis was sub­
stantiated by an analysis of the secondary school chemistry curriculum in the 
Netherlands. Based on these considerations, the author concluded,

Chemical education is relevant from a social point of view to the extent that 
the knowledge it provides is applicable to solve society’s problems. Yet, due 
to the hierarchical relation between scientific knowledge and its applica­
tions, the former is preferred above the latter in chemical education, thereby 
leaving the relevance of chemical knowledge for society mostly out of sight.

(p. 1166)

Finally, the author suggested that as an alternative to logical positivism, science 
educators could explore activity theory within the sociocultural approach.

Galilean Idealization

In contrast to Aristotle, who believed that a continually acting cause (i.e., force) 
was necessary to keep a body moving horizontally at a uniform velocity, Galileo 
predicted that if a perfectly round and smooth ball was rolled along a perfectly 
smooth horizontal endless plane there would be nothing to stop the ball (assum­
ing no air resistance), and so it would roll on forever. Galileo, however, did not 
have the means to demonstrate that Aristotle was wrong, so he asked an episte­
mological question: what would make it (body) stop? And then went on to argue 
that under ideal conditions (with impediments, such as shape of the ball and the 
surface, controlled) a ball could roll on forever. Similarly, Galileo’s discovery of 
the law of free fall later led to a general constructive model of falling bodies 
(Pascual-Leone, 1978). The law in its modern form can be represented by: s = 1/2 
g t2 (s = distance, t = time and g = a constant). In order to “prove” his law of free 
fall, Galileo should have presented empirical evidence to his contemporaries by 
demonstrating that bodies of different weight (but of the same material) fall at 
the same rate. If the leaning tower of Pisa mythical experiment (cf. Segre, 1989, 
for recent controversy) was ever conducted, it would have shown Galileo to be 
wrong. According to Pascual-Leone (1978), empirical computation of the value 
of s as a function of the variable t, “where vacuum and other simplifying assump-
tions are not satisfied” (emphasis added, p. 28), would lead to a rejection of the 
law. As a direct empirical test of Galileo’s ideal law was not possible, he used his 
inclined plane experiment to show that as the angle of incidence approximated 
90 o (free fall), the acceleration of objects rolling down an inclined plane increas­
ingly approximated a constant. According to Kitchener (1993, p. 142), by extrap­
olation one may assume it is also true of free fall as a limiting case.
	 Following Galileo’s method of idealization (considered to be at the heart of all 
modern physics by Cartwright, 1989, p. 188) scientific laws, being epistemological 
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constructions, do not describe the behavior of actual bodies. According to Lewin 
(1935), for example, the law of falling bodies refers only to cases that are never 
realized, or only approximately realized. Only in experiment, which is under 
artificially constructed conditions (idealization), do cases occur which approxi­
mate the event with which the law is concerned. Furthermore, Lewin has argued 
that this conflict between quantification (Aristotelian) and qualitative under­
standing (Galilean) modes of thought constitutes a paradox of empiricism. Gali­
leo’s law of free fall, Newton’s laws, gas laws they all describe the behavior of 
ideal bodies that are abstractions from the evidence of experience and the laws 
are true only when a considerable number of disturbing factors, itemized in the 
ceteris paribus clauses, are eliminated (cf. Ellis, 1991; Matthews, 1987; McMullin, 
1985; Niaz, 1999a). Ceteris paribus clauses play an important role in scientific 
progress, enabling us to solve complex problems by introducing simplifying 
assumptions (idealization). Lakatos (1970) has endorsed this position in the fol­
lowing terms: “Moreover, one can easily argue that ceteris paribus clauses are not 
exceptions, but the rule in science” (p. 102, original italics). This illustrates quite 
cogently the research methodology of idealization utilized for studying physical 
laws in particular and complex problems in general.
	 McMullin (1985) considers the manipulation of variables (disturbing factors) 
as an important characteristic of Galilean idealization:

The move from the complexity of nature to the specially contrived order of 
the experiment is a form of idealization. The diversity of causes found in 
Nature is reduced and made manageable. The influence of impediments, i.e., 
causal factors which affect the process under study in ways not at present of 
interest, is eliminated or lessened sufficiently that it may be ignored.

(p. 265)

According to Rigden and Stuewer (2005), in the physical sciences, the quantita­
tive stands in sharp contrast to the qualitative. To understand any substantive 
topic, qualitative understanding is important, which requires a process of inter­
nalization so that an individual can draw on his resource of words to embrace a 
subject meaningfully. Further details are provided by Niaz (2005a).

Kuhn’s Paradigms

According to Kuhn (1970), most scientific work consists of routine resolution of 
problems, which constitutes “normal science”. As scientists working in a field of 
research achieve consensus with respect to a certain theoretical framework, it leads 
to the formation of a paradigm, which Kuhn later referred to as a “disciplinary 
matrix”. While solving routine problems, scientists come up with anomalies that 
are difficult to resolve and the accumulation of such anomalies frequently leads to 
the overthrow of the existing paradigm and the revolutionary period that ensues 
leads to the formation of a new paradigm. Kuhnian philosophy of science has been 
a major source of inspiration for science educators and the following aspects of his 
philosophy have played an important role: (a) it presupposes subjectivity as an 
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integral part of the scientific process, once thought to be wholly objective; (b) it 
asserts that different paradigms are incommensurate because their core beliefs are 
resistant to change and hence do not permit dialogue; (c) paradigms do not merge 
over time, rather they displace each other after periods of chaotic upheaval or sci­
entific revolution; (d) Kuhnian displacements are not subtle events, but are rather 
understood as cataclysmic clashes in which losers languish and victors flourish. 
Kuhn (1970) himself referred to the subject in the following terms:

if I am right that each scientific revolution alters the historical perspective of 
the community that experiences it, then that change of perspective should 
affect the structure of postrevolutionary textbooks and research publica­
tions. One such effect a shift in the distribution of the technical literature 
cited in the footnotes to research reports ought to be studied as a possible 
index to the occurrence of revolutions.

(p. ix)

Lakatos’ Research Programs

In contrast to paradigms (Kuhn), Lakatos (1970) postulates the importance of 
research programs that are formed by the hard-core/negative heuristic and the 
positive heuristic. Negative heuristic is based on the theoretical framework (pre­
suppositions) of the scientist and is not necessarily refuted by experimental evid­
ence. Most scientists before entering the laboratory do have their presuppositions 
and they hope to get experimental evidence for corroboration. The positive heu­
ristic, on the other hand, defines problems, outlines the construction of a “pro­
tective belt” of auxiliary hypotheses, foresees anomalies and suggests solutions. 
Auxiliary hypotheses, for example, help the scientist to protect the hard-core of 
their research programs. An important aspect of the Lakatos methodology is to 
evaluate rival research programs on a continuum between progressive and 
degenerate. A research program is said to be progressing as long as its theoretical 
growth anticipates its empirical growth, that is, as long as it keeps predicting 
novel facts with some success that is “progressive problemshifts” (Lakatos, 1971, 
p. 100). A research program is progressing if it frequently succeeds in converting 
anomalies into successes, that is, explainable by the theory. The classic example 
of a successful research program is Newton’s gravitational theory. The negative 
heuristic in Newton’s program is the law of gravitation and his three laws of 
dynamics. The positive heuristic enables the scientist to build models by ignoring 
the actual counterexamples, the available data (Lakatos, 1970, p. 135).
	 Application of the Lakatosian methodology to Bohr’s research program as an 
example of how scientists progress from simple to complex models (simplifying 
assumptions) is quite instructive. Lakatos (1970) differentiates clearly between 
the negative and positive heuristic of Bohr’s research program. Bohr’s (1913) 
famous four postulates constituted the negative heuristic of his research 
program. Most teachers and textbooks recognize their importance and still 
ignore that some of these postulates were speculation for which Bohr had no 
warrant or experimental evidence (for further discussion, see Chapter 12). 
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Consequently, in the Lakatosian framework, negative heuristic of a research 
program is resistant to refutation and may even be based on contradictory and 
inconsistent foundations. Furthermore, Lakatos (1970) shows how Bohr used the 
methodology of idealization (i.e., simplifying assumptions) and developed the 
positive heuristic of Bohr’s program by progressing from simple to complex 
models, that is, from a fixed proton-nucleus in a circular orbit, to elliptical orbits, 
to removal of restrictions (fixed nucleus and fixed plane), to inclusion of spin of 
the electron (this was not in discussion in 1913), and so on until the program 
could ultimately be extended to complicated atoms. This illustrates quite cogently 
the research methodology of idealization utilized for studying physical laws in 
particular and complex problems in general.
	 The study designed by Chang and Chiu (2008) to foster argumentation is a 
good illustration of how the Lakatosian methodology (as contrast to other phi­
losophers of science) can be applied in the classroom. These authors asked 70 
undergraduate science and non-science majors in Taiwan to provide written 
arguments about four socio-scientific issues. Results showed that: (a) science 
majors’ informal arguments were significantly better than those of non-science 
majors; (b) science majors made significantly greater use of analogies, while non-
science majors made significantly greater use of authority; (c) both groups had a 
harder time changing their arguments after participating in a group discussion. 
According to the authors, in the study of argumentation in science education, 
scholars have often used Toulmin’s (1958) framework of data, warrant, backing, 
qualifiers, claims and rebuttals. In contrast, however, in their work, the authors 
found that Lakatos’ framework is also a viable perspective, especially when 
warrant and backing are difficult to discern and when students’ arguments are 
resistant to change. This framework highlights how the “hard-core” of students’ 
arguments about socio-scientific issues does indeed seem to be protected by a 
“protective belt” and thus difficult to alter.
	 At this stage it is important to refer to whether history of science should be 
rated X for science education (Brush, 1974). Following Kuhn, some scholars and 
even science educators have argued that detailed presentations based on history 
of science can present an erroneous view of science that may seem to question 
the certainty of scientific laws and theories. Brush (2000), a former student of 
Kuhn, has been considered by some circles to be opposed to the introduction of 
history and philosophy of science in science education. On the contrary, Brush 
(1978) has supported the inclusion of history of science in categorical terms:

Of course, as soon as you start to look at how chemical theories developed 
and how they were related to experiments, you discover that the conven­
tional wisdom about the empirical nature of chemistry is wrong. The history 
of chemistry cannot be used to indoctrinate students in Baconian methods.

(p. 290)

More recently, the claim that history of science corrupts the science student and 
thus should not be included in the curriculum has been considered by some 
scholars to be “superficially bizarre” (Gooday, Lynch, Wilson & Barsky, 2008).
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